x^2+(2x)^2=10^2

Simple and best practice solution for x^2+(2x)^2=10^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+(2x)^2=10^2 equation:



x^2+(2x)^2=10^2
We move all terms to the left:
x^2+(2x)^2-(10^2)=0
We add all the numbers together, and all the variables
3x^2-100=0
a = 3; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·3·(-100)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{3}}{2*3}=\frac{0-20\sqrt{3}}{6} =-\frac{20\sqrt{3}}{6} =-\frac{10\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{3}}{2*3}=\frac{0+20\sqrt{3}}{6} =\frac{20\sqrt{3}}{6} =\frac{10\sqrt{3}}{3} $

See similar equations:

| 4z-88+2z=-6-2z | | 50-6p=4p-2 | | 0.8*x=24 | | -6x+4(-5x-9)=146 | | 58-10x=2+9x | | 4x-2(x-8)=3+3x | | 2-x+90=72 | | 58-10x=2=9x | | 245=6x+7(x+22) | | 12=-8+2n | | 4(x+2)-10=7x+22 | | 3x-1=2x=7 | | s+14=48 | | (1.5x+30)=(2x) | | 150+50x=350 | | 2(x-3)+4=3x | | 3/2x+30=2x | | x+45-10=24 | | 56+y=8y | | s/4+5=7 | | 7/8=21/k | | 120x+1700=x | | 4x+2x+5=0 | | 21=-6(-6x-3) | | x/15=34/5 | | (4/12)=(x/9) | | 3s−5=1 | | y-2.2+2.2=6.4+2.2 | | 8y-3+6y=17 | | x*x+2x*2x=100 | | 4.5x+3.1=-22.5 | | -1/4(8a+20=-2a=5 |

Equations solver categories